Source code for logger

""" Module for logging Velocity data form the Gramophone into HDF5 files. """

import os.path
import time
from abc import ABC, abstractmethod

import h5py
import numpy as np
import xlsxwriter
import GramophoneTools


[docs]class VelocityLog(object): """ A container object for velocity recordins. Handles saving records to HDF5 files. """ def __init__(self): self.filename = None self.records = [] self.deleted = [] self.log_file = None @classmethod def from_file(cls, filename): loaded_log = cls() try: loaded_log.filename = filename loaded_log.log_file = h5py.File(loaded_log.filename, "a") for key in sorted(loaded_log.log_file.keys(), key=lambda key: loaded_log.log_file[key].attrs['start_time']): loaded_log.records.append(FileRecord(loaded_log.log_file[key])) except OSError as err: print(err) return loaded_log def open_log_file(self, filename, mode='a'): self.filename = filename self.log_file = h5py.File(self.filename, mode)
[docs] def save(self): """ Saves all records from this log to file. """ for rec_id, record in enumerate(self.records): print('Saved:', record) self.records[rec_id] = record.save(self.log_file) for record in self.deleted: if isinstance(record, FileRecord): del self.log_file[record.unique_id] self.deleted = []
def close_log_file(self): if self.log_file is not None: self.log_file.close() self.log_file = None def xls_export(self, filename): if self.records: counter = 0 workbook = xlsxwriter.Workbook(filename) data_sheet = workbook.add_worksheet('Data') meta_sheet = workbook.add_worksheet('Metadata') for record in self.records: # Data sheet data_sheet.merge_range( 0, counter, 0, counter+1, record.unique_id) comment = 'ID:{}\nDate: {}\nStart: {}\nFinish:{}\nLength: {}\nMean velocity: {}\nComment: {}'.format( record.rec_id, record.date_hr, record.start_time_hr, record.finish_time_hr, record.length_hr, record.mean_vel, record.comment) data_sheet.write_comment(0, counter, comment, { 'x_scale': 1.5, 'y_scale': 1.5}) data_sheet.write(1, counter, 'time') data_sheet.write(1, counter+1, 'velocity') for t_id, t in enumerate(record.times): data_sheet.write(t_id+2, counter, t) for v_id, v in enumerate(record.velocities): data_sheet.write(v_id+2, counter+1, v) # Metadata sheet meta_sheet.write(1, 0, 'ID') meta_sheet.write(2, 0, 'Date') meta_sheet.write(3, 0, 'Start') meta_sheet.write(4, 0, 'Finish') meta_sheet.write(5, 0, 'Length') meta_sheet.write(6, 0, 'Mean velocity') meta_sheet.write(7, 0, 'Comment') meta_sheet.write(8, 0, 'Device serial') meta_sheet.write(9, 0, 'Software version') meta_sheet.write(0, (counter+2)//2, record.unique_id) meta_sheet.write(1, (counter+2)//2, record.rec_id) meta_sheet.write(2, (counter+2)//2, record.date_hr) meta_sheet.write(3, (counter+2)//2, record.start_time_hr) meta_sheet.write(4, (counter+2)//2, record.finish_time_hr) meta_sheet.write(5, (counter+2)//2, record.length_hr) meta_sheet.write(6, (counter+2)//2, record.mean_vel) meta_sheet.write(7, (counter+2)//2, record.comment) meta_sheet.write(8, (counter+2)//2, record.device_serial) meta_sheet.write(9, (counter+2)//2, record.software_version) counter += 2 # Formatting cell_format_center = workbook.add_format({'align': 'center'}) cell_format_bold = workbook.add_format({'bold': True}) cell_format_center_bold = workbook.add_format( {'bold': True, 'align': 'center', 'valign': 'vcenter'}) meta_sheet.set_column(0, 0, 15, cell_format_bold) meta_sheet.set_column(1, (counter+2)//2-1, 20, cell_format_center) meta_sheet.set_row(0, 20, cell_format_center_bold) workbook.close()
[docs]class Record(ABC): """ Abstract class for velocity records. """ date_format = '%Y.%m.%d.' time_format = '%H:%M:%S' length_format = '%M:%S' @abstractmethod def __init__(self): pass # Subclass should implement these times = NotImplemented velocities = NotImplemented rec_id = NotImplemented start_time = NotImplemented finish_time = NotImplemented comment = NotImplemented sampling_freq = NotImplemented device_serial = NotImplemented software_version = GramophoneTools.__version__ @property def unique_id(self): """ A property that stores a unique id based on the start time of this record. Used for naming folders in the HDF5 file. """ return '%08X' % hash(self.start_time) @property def mean_vel(self): """ A property that holds the mean of the recorded velocities. """ return np.mean(self.velocities) @property def length(self): """ A property that holds the length of this recording in seconds. """ return self.finish_time-self.start_time @property def date_hr(self): """ A property that holds the starting date in a human readable format defined by the data_format class variable. """ return time.strftime(self.date_format, time.localtime(self.start_time)) @property def start_time_hr(self): """ A property that holds the starting time in a human readable format defined by the time_format class variable. """ return time.strftime(self.time_format, time.localtime(self.start_time)) @property def finish_time_hr(self): """ A property that holds the finishing time in a human readable format defined by the time_format class variable. """ return time.strftime(self.time_format, time.localtime(self.finish_time)) @property def length_hr(self): """ A property that holds the length of the recording in a human readable format defined by the length_format class variable. """ return time.strftime(self.length_format, time.localtime(self.length))
[docs] def save(self, log_file): ''' Saves this record into a file and returns a FileRecord that can replace it. :param log_file: An opened HDF5 file :type log_file: h5py.File ''' log_file.create_group(self.unique_id) log_file[self.unique_id].attrs['id'] = self.rec_id log_file[self.unique_id].attrs['comment'] = self.comment log_file[self.unique_id].attrs['date_hr'] = self.date_hr log_file[self.unique_id].attrs['start_time'] = self.start_time log_file[self.unique_id].attrs['start_time_hr'] = self.start_time_hr log_file[self.unique_id].attrs['finish_time'] = self.finish_time log_file[self.unique_id].attrs['finish_time_hr'] = self.finish_time_hr log_file[self.unique_id].attrs['length'] = self.length log_file[self.unique_id].attrs['length_hr'] = self.length_hr log_file[self.unique_id].attrs['mean_velocity'] = self.mean_vel log_file[self.unique_id].attrs['sampling_freq'] = self.sampling_freq log_file[self.unique_id].attrs['device_serial'] = self.device_serial log_file[self.unique_id].attrs['software_version'] = self.software_version log_file[self.unique_id+'/time'] = self.times log_file[self.unique_id+'/velocity'] = self.velocities return FileRecord(log_file[self.unique_id])
[docs]class MemoryRecord(Record): """ A velocity record that is in memory ie. not saved yet. """ def __init__(self, rec_id, sampling_freq, device_serial): super().__init__() # Data self.times = [] self.velocities = [] # Metadata self.rec_id = rec_id self.sampling_freq = float(sampling_freq) self.device_serial = device_serial self.start_time = None self.finish_time = None self.comment = ''
[docs] def start(self): """ Called when recording to this record is started. Saves the current time as the start time. """ self.start_time = time.time()
[docs] def append(self, gtime, vel, rec): """ Appends this record with the given time and velocity if the recording state is 1. """ if bool(rec): self.times.append(gtime) self.velocities.append(vel)
[docs] def finish(self): """ Called then the recording to this record is finished. Saves the current time as the finish time. """ self.finish_time = time.time() self.times = np.array(self.times, dtype=np.uint64) self.times -= self.times[0] # start time at 0 self.velocities = np.array(self.velocities, dtype=float)
[docs]class FileRecord(Record): """ A velocity record that is saved in a HDF5 file. """ def __init__(self, file_group): super().__init__() self.file_group = file_group self.m_rec_id = None self.m_comment = None @property def times(self): """ Returns the time data form file """ return self.file_group['time'][...] @property def velocities(self): """ Returns the velocity data form file """ return self.file_group['velocity'][...] @property def start_time(self): """ Returns the start time form file """ return self.file_group.attrs['start_time'] @property def finish_time(self): """ Returns the finish time form file """ return self.file_group.attrs['finish_time'] @property def rec_id(self): """ Returns the record's ID form file """ if self.m_rec_id is None: return int(self.file_group.attrs['id']) else: return self.m_rec_id @rec_id.setter def rec_id(self, value): """ Sets the record's ID in the file """ self.m_rec_id = value @property def comment(self): """ Returns the record's comment form file """ if self.m_comment is None: return self.file_group.attrs['comment'] else: return self.m_comment @comment.setter def comment(self, value): """ Sets the record's comment in the file """ self.m_comment = value @property def mean_vel(self): """ Returns the record's mean velocity form file """ return self.file_group.attrs['mean_velocity'] @property def sampling_freq(self): """ Returns the record's mean velocity form file """ return self.file_group.attrs['sampling_freq'] @property def device_serial(self): """ Returns the record's device id form file """ return self.file_group.attrs['device_serial'] @property def software_version(self): """ Returns the record's device id form file """ return self.file_group.attrs['software_version']
[docs] def save(self, log_file): """ Saves the modified fields and returns itself. """ if self.unique_id not in log_file: return super().save(log_file) else: if self.m_rec_id is not None: log_file[self.unique_id].attrs['id'] = self.m_rec_id self.m_rec_id = None if self.m_comment is not None: log_file[self.unique_id].attrs['comment'] = self.m_comment self.m_comment = None return self
[docs]class DummyRecord(Record): """ A record with random data insted of recorded velocity. Can be used for testing purposes. """ def __init__(self): from random import randint from scipy.interpolate import interp1d super().__init__() self.rec_id = randint(1, 999) self.sampling_freq = 100.0 self.device_serial = 42 self.start_time = time.time() self.finish_time = time.time()+10 self.times = np.linspace(0, 10_000, num=1001, dtype=np.uint64) vel_f = interp1d(np.linspace(0, 10_000, num=11), np.random.rand(11)*50_000, kind='cubic', ) self.velocities = vel_f(self.times).astype(float) self.comment = 'Fake data'